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Predictability and forecasting

Duane Waliser

12.1 INTRODUCTION

In April of 2002, a workshop was held that brought together participants with a wide
range of geophysical expertise to focus on the problem of sub-seasonal predictability
(Schubert et al., 2002). This workshop marked a relatively important milestone in the
development of our predictive capability of the atmosphere, ocean, and land
systems. The fact that it lured scientists with expertise in modeling, theory, and
observations, as well as operational forecasters and funding agency administrators
indicated that we had reached the point where sub-seasonal variability presented
itself as more than a theoretical concern or vaguely observed set of phenomena. In
fact, the need for such a workshop was based on the recognition that a number of
sub-seasonal features could likely provide near-term opportunities for improving
long-lead forecast skill. One of the keynote speakers, H. van den Dool, brought to
the participants’ attention the early foresight that John von Neumann (1955) had of
the expected progress to be made in the area of “long-range” forecasting. In terms of
present-day terminology, von Neumann recognized (see Appendix I for excerpt) that
the first gains to be made in the area of [atmospheric] prediction were likely to be
made at the short range where the initial conditions are expected to play an
important role (i.e., 1950s-1970s). Following progress in this area, substantial
gains would next be likely made at the very long range, meaning climate prediction,
where surface boundary conditions (e.g., large-scale sea surface temperature (SST))
are expected to play the most important role (i.e., 1980s—1990s). Then, only after
considerable understanding was obtained in each of these two extreme regimes could
progress be made at the sub-seasonal timescale (e.g., 2 weeks to 2 months) where
both the initial conditions and boundary conditions are expected to be important.
The occurrence of this workshop and its follow-on activities (Waliser ez al., 2003a)
indicate that by virtue of our progress with both “weather” and ““climate” prediction
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problems, we had reached a point where it was feasible to consider the intermediary
problem of the sub-seasonal timescale.

While the workshop mentioned above included presentations and discussion of a
number of sub-seasonal phenomena, including the Pacific North America pattern,
North Atlantic Oscillation, Arctic Oscillation, and blocking, it was clear that the
Madden—Julian Oscillation (MJO) was one of the most underexploited in terms of
the likely potential for near-term gains in the area of sub-seasonal prediction, or
maybe more importantly, accounting for its effects on medium-to-extended range
weather prediction. This was not only due to the characteristics of the phenomena
itself (e.g., see Chapter 10) and the direct impact it has on a broad region of the
tropics but because of the role it plays, via tropical diabatic heating variability, on
the evolution of the extra-tropics (e.g., see Chapters 2-5). In order to fully exploit the
possible benefits from MJO/sub-seasonal prediction, it is obvious from the discus-
sion in Chapter 11 that the biggest hurdle to overcome at present is the development
of forecasting models that properly represent the phenomena itself. Once this is
achieved, it is bound to be an important step to making further progress in
weather and climate prediction. For weather, the sub-seasonal timescale offers the
hope for extending (at least occasionally) the range of useful forecasts of weather
and/or weather statistics, while for the seasonal and longer term climate prediction
problem proper representation of the sub-seasonal timescale is a key component of
the atmospheric “‘noise” that is an influential factor in the climate prediction
problem as well as a limitation on expected skill.

The previous chapters in this book illustrate the significant influence that the
MIJO has on our weather and climate. As influential as the MJO is, a fundamental
question yet to be adequately addressed concerns its theoretical limit of predictabil-
ity. For example, it is well known that useful skill associated with deterministic
prediction of most “weather” phenomena is limited to about 6-10 days (e.g.,
Thompson, 1957; Lorenz, 1965; 1982; Palmer, 1993; van den Dool, 1994).
Similarly, it has been found that the likely limit of predictability for the El Nifio
Southern Oscillation (ENSO) is on the order of 12-18 months (e.g., Cane et al., 1986;
Graham and Barnett, 1995; Kirtman et al., 1997; Barnston et al., 1999). However, it
is still yet to be determined what the corresponding metric is for the MJO/intra-
seasonal oscillation (ISO) phenomenon. The somewhat well behaved nature of the
MJO/ISO (e.g., equatorially-trapped; preference for warm SSTs, seasonality) along
with its intraseasonal timescale suggests that useful predictive skill might exist out to
at least 15-25 days and maybe longer. Support for this suggestion comes from
statistical predictive models of the MJO/ISO, which indicate useful skill out to at
least 15-20 days lead time. However, as with any statistical model, these models are
sorely limited in the totality of the weather/climate system they can predict, their
ability to adapt to arbitrary conditions, and their ability to take advantage of known
physical constraints. Additional support for this expectation comes from a few
dynamic predictability studies using the twin-experiment methodology that
indicates useful predictability may extend to 25-30 days or more. However, our
dynamic models still have weaknesses relative to their representations of the MJO
so these values also have to be considered with caution.
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This chapter will review the progress that has been made regarding our capabil-
ities of predicting the MJO via empirical and dynamical means and our understand-
ing of its predictability characteristics. Note that there are a number of studies that
indicate an influence of the MJO on the prediction and predictability of remote
(extra-tropics) and/or secondary circulations (e.g., hurricanes). These will not be
discussed directly but will be alluded to, and in some cases cited, in Section 12.6.
In the following section, a review of empirical methods for forecasting the MJO will
be presented. In Section 12.3, an analogous discussion will be presented for forecasts
based on dynamical (i.e., numerical weather prediction) models. In Section 12.4,
issues regarding the inherent predictability of the MJO will be discussed. In
Section 12.5, present-day efforts of real-time MJO forecasting will be described.
Section 12.6 concludes with a discussion of the outstanding issues and questions
regarding future progress in this area.

12.2 EMPIRICAL MODELS

By the late 1980s, many characteristics of the MJO were fairly well documented and
it was clear that it was a somewhat well defined phenomenon with a number of
reproducible features from one event to another as well as in events from one year
to the next. Given this, and the degree that research had shown a number of
important interactions of the MJO with other features of our weather and climate
system, it was an obvious step to begin to consider MJO forecasting in more earnest.
Since numerical weather and climate models typically had a relatively poor repre-
sentation of the MJO at the time, a natural avenue to consider was the development
of empirical models. Along with likely providing more skillful forecasts than
numerical methods available at the time, this avenue also provided a means to
establish an initial estimate of the predictability limit for the MJO — at least that
which could be ascertained from the observations alone.

The first study along these lines was by von Storch and Xu (1990) who examined
Principal Oscillating Patterns (POPs) of equatorial 200-mb velocity potential
anomalies from a 2-year subinterval of a 5-year data set. Upon verifying against
the data set as a whole (as well as against the remaining three years of data), they
found that forecasts based on the first pair of POPs — which tended to emphasize the
variability in austral summer (e.g., Figures 4.5 and 5.8) — produced forecasts that
were better than persistence and appeared to have useful skill out to at about 15 days
(Figure 12.1). While this was a somewhat encouraging result — at least relative to
“weather”, the limited length of data used combined with the non-stationary char-
acteristics of the MJO over interannual timescales (e.g., Salby and Hendon, 1994;
Hendon et al., 1999) necessitated some caution in over-interpretation. Moreover,
given the smoothly varying nature of the 200-hPa velocity potential, and the fact that
it is only loosely related to near-surface meteorological variables (e.g., precipitation),
also suggested caution in generalizing this result to other years, variables, and/or
different techniques. In this regard, one might hope that given the roughly 50-day
timescale of the MJO that it might be possible to have useful skill out to one-half of a
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Figure 12.1. Measures of (a) correlation and (b) root-mean-square error forecast skill for
persistence and the POP-based forecasting scheme developed by von Storch and Xu (1990).
The skills have been derived from daily forecast experiments for the period May 1984 to April
1989. Note the model itself was developed from data between May 1986 to April 1988.

period (van den Dool and Saha, 2002) — particularly for upper level flow (e.g., 200-
hPa velocity potential). Subsequent to the above, Kousky and Kayano (1993)
suggested that real-time monitoring of the MJO could be achieved by projecting
anomalies of a number of fields, outgoing long-wave radiation (OLR) (200-hPa
velocity potential, surface pressure, etc.) onto their leading combined extended
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Figure 12.2. (left column) Mode 1 from the Singular Value Decomposition (SVD)-based MJO
forecasting scheme developed by Waliser et al. (1999b) for the northern hemisphere winter and
a 3-pented lead forecast. The top panel shows the predictor patterns for “Pentad0” (the
current pentad) and “Pentad0 — 1 (the previous pentad). The bottom panel shows the
associated predicted patterns for “Pentad0 + 3” (i.e., 3 pentads in the future). (right column)
The same, except for northern hemisphere summer. Here winter (summer) is defined as
November 17 to May 15 (May 16 to November 16). Note that mode 2 for each season
looks similar to mode 1 but tends to be spatially in quadrature.

empirical orthogonal function patterns which would indicate the present phase and
strength of the MJO in the tropical atmosphere and its likely evolution. It turns out
that a number of later developments in the area of empirical MJO prediction tended
to follow this suggestion in one form or another.

After a relatively long hiatus in this area, Waliser ez al. (1999b) developed an
empirical MJO forecasting method in order to use the skill results as a benchmark by
which to judge the predictive skill of numerical long-range forecasts and to begin
exploring the feasibility of employing such a model to augment operational long-
range forecasting procedures. The model was based on a field-to-field Singular Value
Decomposition that used previous and present pentads of OLR to predict future
pentads of OLR (Figure 12.2). Separate models were developed for austral
and boreal summer conditions (e.g., Figures 4.5 and 4.10, respectively) using
30-70-day filtered OLR data from 1979 to 1989 and validated on data from 1990
to 1996. For the validation period, the model exhibited temporal correlations to
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filtered observations of about 0.5-0.9 over a significant region of the eastern
hemisphere at lead times from 15 to 20 days, after which the correlation dropped
rapidly with increasing lead time. Correlations against observed total anomalies were
of the order of 0.3 to 0.5 over a smaller region of the eastern hemisphere. While this
was an equally, if not more, encouraging result than that of von Storch and Xu
(1990), discussed above, the fact that the model utilized filtered data limited its real-
time applicability and in this case warranted caution in considering the result too
optimistic. In concluding their study, the authors provided a number of avenues for
addressing this filtering problem (i.e., being able to isolate the MJO signal from both
the “weather” and the interannual climate variations). For example, it was suggested
that the low-frequency variations (i.c., ENSO variability) might be removed using
projections on low-order empirical orthogonal functions from coarser (e.g.,
monthly) data, and high-frequency signals could be removed by using longer time
averages, that could even overlap to retain some aspect of the high temporal reso-
lution (e.g., overlapping 10-day averages every 5 days). In addition, it was noted that
once the low-frequency variability was removed, low-pass spatial filtering might
serve as a useful mechanism for low-pass temporal filtering given that the MJO
variability tends to be isolated to wave numbers 1-3 and periods of about 40-60
days.

Following the above study, there were a number of empirical MJO forecasting
efforts that each produced a unique and useful approach to the problem. Lo and
Hendon (2000) developed a lag regression model that uses as predictors the first two
and first three principal components (PCs) of spatially filtered OLR and 200-hPa
streamfunction (¥), respectively, to predict the evolution of the OLR and 200-hPa
streamfunction anomalies associated with the austral summer MJO. In order to
address the filtering problem discussed above in regards to real-time application,
the data had the annual cycle, interannual and high-frequency (i.e., < 30 days) com-
ponents removed separately. The annual cycle was removed by subtracting out the
first three annual harmonics pointwise. The interannual (e.g., ENSO) variability was
removed by developing regression equations between the OLR (and W) anomalies
and the PC time series from the first two EOFs of tropical SST anomalies (SSTAs).
Based on these regressions and the daily SST values (interpolated from weekly data),
the low-frequency components of OLR (and W) that could plausibly be attributed to
ENSO were removed. Subsequent to this, the high-frequency temporal components
of the data were removed by subjecting the data to a T12 spectral truncation —
utilizing the notion that the high-frequency temporal and high wave number
spatial variations tended to occur concomitantly. The resulting intraseasonally
filtered OLR and ¥ anomalies were subjected to an EOF decomposition and then
time-lagged regression equations were developed for predicting, at a given lead, the
PC values for the EOF modes that define the MJO (e.g., mode 1 and 2). When tested
on independent data, the model exhibited useful skill (correlation ~ 0.5) for predic-
tions of these PCs out to about 15 days (Figure 12.3), with greater skill during active
vs. quiescent MJO periods. In comparisons to the filtered observed OLR data, the
model exhibited correlation values around 0.3-0.4 in a fairly broad region of the
equatorial Indian Ocean and maritime continent.
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Figure 12.3. (top) Measure of forecast skill for the MJO forecasting scheme developed by Lo
and Hendon (2000) in terms of correlations between predicted values and verifying values of
the PC values associated with mode 1 (PC 1; left) and PC values associated with mode 2 (PC 2;
right). Predictions were made using PC 1 and PC 2 of OLR anomalies (stars), the leading three
PCs of the 200-hPa streamfunction anomalies, and leading two PCs of OLR anomalies
(asterisks). Persistence is shown as the dotted curve. (bottom) Correlations between
predicted values and verifying values of PC 1 (solid lines) and PC 2 (dashed lines) of OLR
anomalies for times when the MJO was active (squares) and quiescent (circles) at the initial
condition during the five winters of dependent data. Predictions were made using the leading
three PCs of the 200-hPa streamfunction anomalies and leading two PCs of OLR anomalies. In
all figures, correlations are shown as a function of forecast lead time and the verification is
against the five winters (1984/1985-1989/1990) of independent data.

A somewhat different approach was taken by Mo (2001) who utilized empirical
basis functions in time for the forecasting procedure. This was done by using a
combination of singular spectrum analysis (SSA) (Vautard and Ghil, 1989) for the
filtering and identification of the principal modes of variability and the maximum
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entropy method (MEM) (Keppenne and Ghil, 1992) for the forecasting component.
The procedure was applied to monitor and forecast outgoing longwave radiation
anomalies (OLRAs) in the intraseasonal band over both the Indian—Pacific sector as
well as the Pan-American region. This included variability such as the MJO, higher
frequency intraseasonal modes associated with the Asian monsoon (see Chapters 2
and 3), and variability related to both of these that occurs over the US west coast
(see Chapter 4). For example, in the Pacific and the Pan-American region, there were
three leading modes (T-EOFs) identified with periods near 40, 22, and 18 days. In
this method, the leading SSA modes (T-EOFs) are determined from a training
period. The OLRA time series are then projected onto T-EOFs to obtain the
principal components (T-PCs). To obtain fluctuations in a given frequency band
of interest (i.e., perform filtering), a subset of the T-EOFs and the related T-PCs
associated with that band are summed. This filtering procedure, based on the SSA
modes, is data adaptive and there is no loss of end points. This aspect makes it
particularly well suited for real-time monitoring. To perform forecasts, the MEM is
used to determine the autoregressive coefficients from the training period. These
coefficients are used to forecast the T-PCs at future leads. The summation of the
T-EOFs and T-PCs related to three retained modes used in the filtering process gives
the predicted OLRAs. When tested on 8 years of independent December—February
and June-August OLRA data, the averaged correlation over the tropics between the
predicted and the observed anomalies was 0.65 (range 0.48—0.78) at the lead times of
four pentads (20 days). An example of the forecast skill for the equatorial region for
the 1992/1993 winter is given in Figure 12.4. The main activity in this record occurs
prior to February 1993 and extends between the Indian and central Pacific Oceans.
Although the model amplitudes are weaker that the observations, a feature not
uncommon amongst the empirical models, the spatial-temporal structure is well
captured out to the pentad-4 forecast.

In a quite different approach, Wheeler and Weickmann (2001) utilized tropical
wave theory (Matsuno, 1966) as the basis for their filtering and forecasting
technique. Essentially, a space—time Fourier analysis is performed on daily OLR
data for a given time—longitude section of interest in the tropics. In a previous
study, Wheeler and Kiladis (1999) showed that the spectrum from such an
analysis exhibits variability that is associated with the modes that one would
expect from theoretical considerations (e.g., Kelvin waves and mixed Rossby—
gravity waves), as well as the expected peak of variability around wave numbers
1-3 and 40-60 days associated with the MJO. In order to monitor and predict the
evolution of a given mode of interest, the specific zonal wave numbers and frequen-
cies associated with the mode(s) of interest are retained and then the modified
spectrum is inverse-Fourier analyzed. Figure 12.5 shows how the filtered values
obtained for times before the end of the data set can be used for monitoring the
activity of a given mode, while the filtered fields obtained for times after the end
point may be used as a forecast. This idea is akin to an ocean tidal forecast, which in
that case is based on harmonic analysis in time only and of course much sharper
frequencies of variability. For prediction, the method exhibits useful skill for the
MJO out to about 15-20 days. An advantage is that the method readily provides
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Figure 12.4. (a) 10-90-day filtered OLRAs averaged from 10°S to 10°N based on the
minimum bias window for the 1992/1993 winter from observations. Contour interval is
10Wm™2. Contours 25 and 5Wm™2 are added. Negative values are shaded and zero
contours are omitted. (b) Same as (a), but for 10-day (pendad 2) forecasts based on the
empirical model developed by Mo (2001) verified on that day. (c) Same as (b), but for 15-
day forecasts (pentad 3). Contour interval is 5W m . (d) Same as (c), but for 20-day (pentad

4) forecasts.
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Figure 12.5. (a) Time-longitude plot of the total OLR (with R21 spatial truncation, and a 1-
2-1 filter applied in time) and filtered OLRAs averaged between 10°S and 5°N during late 1996
to early 1997. Shading is for the total OLR, and contours are for the diagnostically filtered
anomalies of the MJO and n =1 equatorial Rossby (ER) wave. Solid contours represent
negative OLRAs, while dashed contours are for positive anomalies, with the contour
interval for both wave filtered bands being 10Wm™2, and the zero contour omitted. (b)
Same as in (a) except that the filtering was performed with the last day of data being that
from 5 December 1996. After 5 December, when the real-time filtered anomalies are continued

into the future as a forecast, the contour interval is halved.
From Wheeler and Weickman (2001).

predictions of other well-defined, typically higher frequency, modes of large-scale
tropical variability.

In an effort that focused on active and break conditions of the Indian summer
monsoon, Goswami and Xavier (2003), noted that all active (break) conditions go
over to break (active) phases after about 15-20 days (see Figure 2.3). The events
would be highly predictable if the transitions from active to break (or vice versa)
were all identical. However, the rate of transition, the magnitude of the next
minimum (or maximum), and the timing of achieving the minimum (maximum) of
the next phase vary from event to event. Using the rainfall-based index illustrated in
Figure 2.3 and their definition of active and break conditions (see Chapter 2),
Goswami and Xavier calculated the typical (i.e., ensemble average) transition from
active to break (and break to active) conditions as a function of lead time. The
typical size of these transitions — referred to as the “‘signal”, and their associated
intra-ensemble variance — referred to as the (ensemble) “‘spread”, are shown in
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Figure 12.6. (a) The thick dashed (solid) line is the monsoon ISO “‘signal” starting from
troughs (peaks) of the index (see Figure 2.3). The thin dashed (solid) line is the variance (or
spread) of ensemble members as a function of days from the initial date corresponding to all
troughs (peaks) of the index representing transitions from break to active (active to break). (b)
Time series of 18-day predictions (thin line) and observations (thick line) of the rainfall

(mmday ") averaged over the monsoon trough region for June-September 2000.
From Goswami and Xavier (2003).

Figure 12.6(a). While the variability among break to active transitions become as
large as the associated signal in less than 10 days, it takes more than 20 days for
the variance among active to break transitions to become as large as the signal.
Circulation parameters such as the 850-hPa relative vorticity over the monsoon
trough region also lead to the same conclusion (not shown). These results indicate
that monsoon breaks are intrinsically more predictable than active monsoon con-
ditions. Similar results were found by Waliser et al. (2003¢) using an ensemble of
twin-predictability GCM experiments (see Section 12.4). To explore the practical
consequences of these results, Goswami and Xavier constructed an empirical
multiple regression model for the first four PCs of 10-90-day filtered CMAP using
the first four PCs of filtered rainfall data and the first two PCs of filtered surface
pressure as predictors, and showed that useful prediction of monsoon breaks, up to
18 days in advance, could be made while useful forecast of active conditions could be
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made with lead times of only about 10 days. Eighteen-day forecasts of filtered
precipitation averaged over central India and the northern Bay of Bengal (70°E—
85°E, 10°N-22°N) for June to September 2000 are shown in the lower panel of
Figure 12.6.

The above discussion gives a flavor of the types of empirical MJO modeling that
have been developed to date and their associated levels of forecast skill. However,
there is a number of additional empirical modeling studies worth describing that are
presently associated with real-time efforts and these are discussed in Section 12.5. In
regard to the studies above, it is useful to emphasize at this point that the skill
associated with the techniques above in almost all cases has yet to be demonstrated
by numerical forecast techniques (e.g., Waliser et al., 1999b; Jones et al., 2000; Lo
and Hendon, 2000; Wheeler and Weickmann, 2001). Moreover, it is worth high-
lighting that in no cases are these schemes physical in nature or based on very
complex techniques, and they are all based on linear methods. Thus, it is likely
that we may not have yet developed and demonstrated models that have saturated
the skill potential for empirical forecasting methods. In addition, it is also worth
highlighting that MJO events are at best quasi-periodic in nature, meaning here that
the atmosphere can be relatively quiescent in regards to MJO variability with an
event suddenly developing. Each of the models above would tend to perform rela-
tively poorly at forecasting this initial development, as they all tend to rely on the
periodic nature of the MJO to forecast its evolution. For these scenarios, as well as
for dealing with the heterogeneity of MJO events, it will be vital to improve our
dynamic models, as they are likely to be the best means to deal with these sorts of
issues. In any case, the above sorts of studies provide a useful benchmark in forecast
skill for our dynamical models and suggest, based on the observations alone, that the
MJO should be predictable with lead times of at least 2—3 weeks.

12.3 DYNAMICAL FORECAST MODELS

To date, there have only been a handful of studies that have examined forecast skill
(i.e., verified against observations) from dynamical models. This has probably
stemmed from what amounted to: (a) considerably less overall interest in forecasting
the intraseasonal timescale relative to weather and ENSO, (b) the difficulty and
resources required to produce an adequate sample of very long-range weather
forecasts (at least 30 days), (c) the pessimism and known challenges associated
with tropical weather forecasting in general, and (d) the indications that neither
our forecast nor climate simulation models were very adept at simulating the MJO
(see Chapter 11). In any case, as part of a more generalized forecast skill study of the
planetary-scale divergent circulation, Chen and Alpert (1990) examined the MJO
forecast skill from one year (June 1987-May 1988) of daily 10-day forecasts from the
US National Meteorological Center’s [NMC; now National Center for Environmen-
tal Prediction (NCEP)] medium-range forecast (MRF) model (based partly on
MRF86 and MRF87) in terms of the 200-hPa velocity potential. In their analysis,
the MRF’s forecast skill, measured in terms of spatial correlations of 200-hPa
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Figure 12.7. Equatorial time-longitude diagram of 200-hPa velocity potential anomalies
constructed from the first two EOF modes of the data. In this case, the EOF was done
separately for each lead time. Values are shown for: (a) initial conditions, (b) day 5
forecasts, and (c) day 5 forecast errors. The solid line connects maximum initial condition
200-hPa velocity potential anomalies for one-half of a life cycle of the ISO during winter in (a).
The dashed line connects maximum 200-hPa velocity potential anomalies of the day 5 forecast
in (b). The solid line of (a) is also shown in (b) for comparison. The contour interval is
1.0x 10°m*s .

From Chen and Alpert (1990).

velocity potential between 50°N-50°S, declined to about 0.6 by forecast day 6 and
0.4 by forecast day 9. This relatively poor skill was attributed to: (1) the inability of
the model to maintain MJO variability during a forecast (thus the model probably
did not intrinsically exhibit or support an MJO of its own) and (2) the model’s
tendency to propagate MJO anomalies too fast. This latter aspect is illustrated in
Figure 12.7. The left panel illustrates the observed 200-hPa velocity potential with a
line overlaid to indicate the observed phase speed of one of the stronger events. The
middle panel illustrates the model forecast values at a lead time of 5 days with the
same line overlaid from the left panel which shows quite clearly that the model is
propagating the anomalies too fast. Lau and Chang (1992) analyzed one season (14
December 1986-31 March 1987) of 30-day global forecasts derived from a set of
Dynamical Extended Range Forecasts (DERFs) from a research version of the
MRF86 model mentioned above. Their results, depicted in Figure 12.8, showed
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Figure 12.8. Forecast (thick) and persistence (thin) error curves for the first EOF of the global
velocity potential (referred to as the tropical mode) from the NMC (now NCEP) Phase 11
DEREF experiment. This data set consisted of 108 30-day forecasts for the period 14 December
1986-31 March 1987. The top (bottom) shows the errors for a period of weak (strong) MJO
activity. The horizontal lines indicate the level of natural variability for the corresponding

periods.
From Lau and Chang (1992).

that the forecast model had significant skill in predicting the global pattern of ISV in
200-hPa velocity potential and streamfunction for up to 10 days lead time, with the
error growth of tropical and extra-tropical low-frequency modes less than persis-
tence when the amplitude of the MJO was large and vice versa when the amplitude
was small.

Both Hendon et al. (2000) and Jones et al. (2000) analyzed a more recent DERF
experiment which used the reanalysis version (Kalnay et al., 1996) of the NCEP
MRF model (Schemm et al., 1996). This experiment included 50-day forecasts
made once a day for the period January 1985-February 1990. In both studies, the
focus was on the northern hemisphere winter season. Using different analysis and
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filtering techniques for identifying the MJO within the forecasts, and thus for
assessing forecast skill against observations, both studies concluded that this
version of the NCEP MRF model also exhibited a rather poor MJO forecast skill.
Specifically, the upper panel of Figure 12.9 from Jones et al. (2000) shows that the
anomaly correlations of intraseasonally filtered values of 200-hPa zonal wind,
zonally-averaged along the equator, declined from about 0.6 on day 3 to 0.2 by
day 10. The lower panel shows that the model exhibited a forecast skill that was
slightly better (worse) when the MJO was particularly active (weak; i.e., null case)
and that the model skill might have some dependence on the phase of the MJO (see
caption for details). The rather poor forecast skill was attributed to the development
of systematic errors in the forecast upper-level winds, particularly over the eastern
Pacific and, as above, due to the inability of this model to maintain/simulate a robust
MJO phenomena itself. For example, a diagnosis of the model’s representation of the
MIJO from a 10-year simulation using the same model showed an MJO-like
phenomenon but one that was significantly less intense and propagated considerably
faster than the observed phenomenon (Jones et al., 2000).

The rather detailed analysis by Hendon et al. (2000) showed that the forecasts
initialized during very active episodes of the MJO did not reproduce the observed
eastward propagation of the tropical convection and circulation anomalies, rather
the anomalies would typically weaken in place and even retrograde in some cases.
Typically it was found that the convective anomalies would decay almost completely
by day 7 of the forecast, and in nearly the same time systematic errors in the extra-
tropical 200-hPa streamfunction became fully developed. They argued that the errors
in the latter developed due to the collapse of the tropical heating anomalies and thus
the development of an error in the Rossby wave source emanating from the tropics.
Due to the types of errors, which are greatest for the largest MJO anomalies, and
likely due to their categorization of active events, their analysis showed that forecast
skill in the tropics and northern hemisphere extra-tropics was actually worse
during the active MJO events vs. periods that exhibited very little MJO activity
(Figure 12.10 — see caption for details). The above studies point to the need for
the forecast models to not only have a proper representation of MJO anomalies
but also to produce an unbiased mean state so initialization errors and their sub-
sequent evolution/adjustment do not contaminate the forecast over these relatively
long lead times.

In a totally independent line of research, T. N. Krishnamurti produced a number
of studies in the early 1990s that examined MJO forecast skill as it relates to active
and break periods of the Asian summer monsoon. Underlying these studies is the
development and application of a unique and potentially promising avenue for
forecasting “low-frequency modes™ (as they are referred to in these studies). In the
first study, Krishnamurti et a/. (1990) laid the groundwork for the method which
argues that part of the loss of forecast skill associated with low-frequency modes
such as the MJO during a forecast comes about from the errors and evolution of
high wave number/frequency variability. If the forecast objective is primarily the
prediction of low-frequency variability (e.g., active and break periods of the
monsoon), then it is plausible to filter the initial state in order to remove all but
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Figure 12.9. Zonal average along the equator of the anomaly correlation between the forecast
and verification of 200-hPa zonal velocity as a function of lead time. Forecast data are based
on the DERF experiment (Schemm et al., 1996) which used the reanalysis version (Kalnay et
al., 1996) of the NCEP MRF model. This experiment included 50-day forecasts made once a
day for the period January 1985-February 1990. Correlations are shown for (zop) each winter
season separately and for (bottom) the forecast separated into four different phases of the
MIJO, and quiescent (i.e., null) cases, using the PC values of the first two EOFs of intrasea-
sonally filtered OLR. Values associated with PC 14, PC 1—, PC 2+, and PC 2— are associated
with the convective phase being located at 90°E, 120°E, 150°E, and 170°W, respectively, at the

start of the forecast.
From Jones et al. (2000).
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Figure 12.10. Anomaly correlations between forecasts, as functions of lead time, and verifica-
tion of the 200-hPa streamfunction for: (a) the tropical region 30°N-30°S, 30°E-150°W; (b)
the northern hemisphere extra-tropical region 30°-90°N, 90°E-90°W; and (c) the southern
hemisphere extra-tropics 30°S-90°S. Forecast data are based on the DERF experiment
(Schemm et al., 1996) which used the reanalysis version (Kalnay er al., 1996) of the NCEP
MRF model. This experiment included 50-day forecasts made once a day for the period
January 1985-February 1990. Correlations are shown for all forecasts initialized when the
MJO was active and quiescent and for times when the MJO was inactive (i.e., neither active
nor quiescent). Active and quiescent MJO periods were selected using the PC values of the first
two EOFs of intraseasonally filtered OLR. Empirically corrected (lead-dependent systematic
MJO error estimated and removed) anomaly correlations are also shown for the forecasts
initialized when the MJO was active (labeled ‘“‘active corrected’). Also shown in (a) is the
anomaly correlation for the canonical MJO (i.e., a simple empirical model), which is formed
by lag regression of the verifying analyses onto the leading two PCs of OLR at the initial
forecast time.

the relevant/recent “mean” state (e.g., 45-day average conditions prior to forecast)
and the low-frequency modes of interest (in this case, obtained via time filtering).
Krishnamurti et al. (1990) argue that this will delay the “contamination of the low-
frequency modes as a result of the energy exchanges from the higher frequency
modes.”

The above idea was tested using a T21 version of the Florida State University
(FSU) global spectral model (Krishnamurti ez al., 1990). Observed SSTAs, filtered to
include only 30-50-day variability (Krishnamurti et al., 1988) and multiplied by a
factor of 3.5 to help account for the coarse vertical/boundary-layer structure (i.e., 8
total layers), were specified in addition to the mean annual cycle of SST. While the
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Figure 12.11. (top) A y—t diagram of the monsoonal low-frequency ridge line at 850 hPa. The
results are shown for the observations, control experiment (no SSTA and complete initialized
state), and the SSTA experiment (SSTA specified and initialized state includes time-mean and
low-frequency mode only. (bottom) Same as (fop), except an x—t diagram of the position of the

200-hPa divergent center. See text for details of experimental set-up and dates of forecasts.
From Krishnamurti et al. (1990).

latter specification certainly provides the hindcast with information that a true
forecast would not have, the results from the 270-day forecast case study
performed from 31 July, 1979, were still encouraging given that intraseasonal
SSTAs are not a dominant control at this timescale (Chapters 7, 10, and 11).
Figure 12.11 shows that the model forecast exhibited considerable skill at predicting
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the meridional motion of the 850-hPa trough-ridge system over India and the
eastward propagation of the 200-hPa divergence anomaly out to about 4 weeks. A
control experiment that included all frequencies and wave numbers associated with
the initial conditions (that the model would accommodate) and that did not include
the SSTAs actually performed quite poorly in the first few days. In addition, it was
found that if only the mean annual cycle of SST is specified, the amplitude of the
low-frequency wave motion degrades considerably, thus indicating the importance of
such SSTAs in such an experiment. In Krishnamurti ez al. (1992, 1995), analogous
experiments using two select case studies were performed for low-frequency “wet and
dry spells” over China and Australia for each of their associated summer monsoons
with essentially the same results as those indicated. As in the first study, the SSTAs
were found to be vital to retaining the forecast skill. In both of these studies, simple
empirical prediction of the SSTAs was incorporated and found to provide much of
the necessary SST information to retain most of the long-lead forecast skill found in
this suite of experiments.

124 PREDICTABILITY

The previous two sections provide some indication of what the inherent predict-
ability limit might be for the MJO. From the empirical model studies, this limit
might be ascertained to be at least 20-30 days. However, as with any empirical
model, these models are limited in the totality of the weather/climate system they
can predict, their ability to adapt to arbitrary conditions, and their ability to take
advantage of known physical constraints. Thus one might conclude that if dynamical
models had a realistic representation of the MJO, this limit might be extended
somewhat. However, the information that can be ascertained from the above
mentioned dynamical studies regarding the intrinsic predictability of the MJO is
limited, due to the fact that they were ecither based on models with a relatively
poor representation of the MJO (e.g., weak amplitude and relative fast phase pro-
pagation) or they were based on only a few select cases. Moreover, since all the
dynamical studies discussed above were verified against observations, their degrada-
tion in skill with lead time includes the component associated with the natural limit
of predictability of the MJO phenomenon as well as a model’s systematic bias
associated with the MJO.

A complimentary avenue of research for ascertaining the inherent limits of
prediction for the MJO could be derived from so-called ““twin-predictability’’ experi-
ments in which the model employed is presumed to be “perfect” and forecast
experiments are verified against others that only differ in the initial conditions
(e.g., Lorenz, 1965; Shukla, 1985). This approach was taken in two recent studies
by Waliser et al. (2003b, ¢). The important consideration for a study such as this is
that the model provides a relatively realistic representation of the phenomenon of
interest. In this case, the experiments were performed with the NASA Goddard
Laboratory for Atmosphere’s (GLA) GCM (Kalnay et al., 1983; Sud and Walker,
1992). In a number of studies, this model has been shown to exhibit a relatively
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realistic MJO (Slingo et al., 1996; Sperber et al., 1997; Waliser et al., 2003d) with
reasonable amplitude, propagation speed, surface flux properties, seasonal modula-
tion, and interannual variability (IAV) (Waliser et al., 2001). One of its principal
deficiencies is its relatively weak variability in the equatorial Indian Ocean, a
problem quite common in AGCMs (Waliser et al., 2003d).

For these studies, a 10-year control simulation using specified annual cycle SSTs
was performed in order to provide initial conditions from which to perform an
ensemble of twin-predictability experiments. Note that this analysis was performed
separately on northern hemisphere winter MJO activity (i.e., that which typically
travels eastward along the equator and South Pacific Convergence Zone (SPCZ);
e.g., Figure 4.5) and northern hemisphere summer MJO activity (i.e., that which
typically travels north-eastward into Indian/South East Asia; e.g., Figure 4.10). The
following discussion describes the northern hemisphere winter study (Waliser e? al.,
2003b) but the methods and results are quite similar for the northern hemisphere
summer analog (Waliser et al., 2003c). Initial conditions were taken from periods of
strong MJO activity identified via extended EOF analysis of 30-90-day band-passed
tropical rainfall during the Oct—Apr season. From the above analysis, 15 cases were
chosen when the MJO convection was located over the Indian Ocean, maritime
continent, western Pacific Ocean, and central Pacific Ocean, respectively, making
60 cases in total. In addition, 15 cases were selected which exhibited very little to
no MJO activity. Two different sets of small random perturbations, determined in a
rather ad hoc and simplistic manner, were added to these 75 initial states. Simula-
tions were then performed for 90 days from each of these 150 perturbed initial
conditions.

A measure of potential predictability was constructed based on a ratio of the
signal associated with the MJO, in terms of band-passed (30-90-day filter) rainfall or
200-hPa velocity potential (VP200), and the mean square difference between sets of
twin (band-passed) forecasts. Predictability was considered useful if this ratio was
greater than one, and thus if the mean square error was less than the signal asso-
ciated with the MJO. The results indicate that useful predictability for this model’s
MJO extends out to about 20 to 30 days for VP200 and to about 10 to 15 days for
rainfall (Figure 12.12). This is in contrast to the timescales of useful predictability for
the model’s weather, or for cases in which the MJO is absent, which is about 12 days
for VP200 and 7 days for rainfall. Note that these latter two regimes are related, in
that when the MJO is quiescent, the model lacks a low-frequency component that
might help it retain predictability over long timescales and is in a regime where the
processes and timescales of weather are the only phenomena left to give predict-
ability. In addition to the above, the predictability measure exhibited modest depen-
dence on the phase of the MJO, with greater predictability for the convective phase
at short (< ~5 days) lead times and for the suppressed phase at longer (> ~ 15 days)
lead times.

While the results from these studies are encouraging from the view point of sub-
seasonal prediction, and are not entirely inconsistent with the sorts of complimen-
tary studies mentioned above, there are a number of issues to consider that might
impact the limit of predictability estimate they provide. First, the model has been
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Figure 12.12. Predictability measure (defined as the ratio of the MJO *“‘signal” and the MJO
forecast error; see Waliser et al., 2003b) vs. lead time based on 120 northern hemisphere winter
MIJO twin-predictability forecast cases for VP200 (left) and rainfall (right) from the NASA
GLA model for 120 active/strong MJO cases (solid black), 30 weak/null MJO cases (dashed
gray), and the unfiltered ““weather” variations (using the 120 active MJO cases; solid gray) for
the region 8°N-16°S and 120°E-165°E.

shown to have too much high-frequency low-wave-number activity (Slingo et al.,
1996). Relative to the MJO, this variability would be considered to be disorganized,
errant convective activity that may erode the relatively smooth evolution of the MJO
and thus diminish its predictability. Second, these simulations were carried out with
fixed climatological SST values. A previous study with this model showed that
coupled SSTs tend to have an enhancing and organizing influence on the MJO,
making it stronger and more coherent (Waliser et al., 1999a). Thus the exclusion
of SST coupling may lead to an underestimate of the predictability as well. Both of
these issues would appear to have a direct relation to the methods and results
associated with the Krishnamurti et a/. studies discussed above.

There are also a number of aspects associated with the model and/or analysis to
suggest that the above results might overestimate the predictability of the MJO. The
first is that the model’s coarse resolution and inherent reduced degrees of freedom
relative to the true atmosphere may limit the amount of small-scale variability that
would typically erode large time and space scale variability. However, it is important
to note in this regard that the low-order EOFs of intraseasonally filtered model
output typically do not capture as much variability as analogous EOFs of
observed quantities. Thus the model’s MJO itself still has room to be more robust
and coherent which would tend to enhance predictability. In addition to model
shortcomings, the simple manner in which perturbations were added to the initial
conditions may also lead to an overestimate of the predictability. The perturbation
structure and the size of the perturbations may be too conservative and not
adequately represent the type of initial condition error that would be found in an
operational context. However, even if that is the case, it would seem that adequate
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size “initial”” errors would occur in the forecast in a matter of a day or two and thus
one would expect this aspect to overestimate the predictability by only a couple of
days, if at all.

In order to address some of the uncertainties mentioned above, an analogous
study for boreal summer conditions using the European Centre for Medium-range
Weather Forecast-Hamburg atmospheric model (ECHAM) AGCM has recently
been undertaken (Liess et al., 2004). The modeling and analysis framework is
similar to that described above with two important exceptions. First, rather than
select a large number of events (i.e., ~15-20) for each of the 4 phases of the boreal
summer ISO (i.e., convection in Indian, maritime continent, western Pacific, central
Pacific) and performing only a few (i.e., 2) perturbation experiments with each, this
study has selected 3 relatively strong events and performs a larger ensemble of
forecasts for each of the 4 phases (i.e., 15). In addition, rather than use simply
determined perturbations, this study uses the breeding method (Toth and Kalnay,
1993; Cai et al., 2003). The left panels of Figure 12.13 show precipitation (upper) and
200-hPa velocity potential (right) from the individual members of one of the 15-
member ensembles (i.e., one phase of one event). Evident is the expected spread of
the forecasts with lead time. The right panels of Figure 12.13 quantify this spread in
terms of a “‘signal-to-noise” ratio, defined as in the Waliser er al. (2003) study
described above. These results suggest that the boreal summer ISO exhibits
dynamical predictability with lead times potentially up to and beyond 30 days.
These lead times are at least as large, if not larger, than those found in the
Waliser et al. studies highlighted above. However, it should be noted that the
events analyzed here are the strongest 3 events in a 10-year model simulation
record, and those above were based on both strong and moderate size events
which could account for the difference. In any case, even though the above results
do not take into account systematic model bias relative to the observations, they,
along with many of the other studies discussed above, indicate that a promising
avenue and timescale of operational prediction lies ahead.

12.5 REAL-TIME FORECASTS

Based on the qualified success of some of the MJO prediction efforts discussed
above, namely those associated with empirical models, a number of forecast
schemes have been implemented in real time. The first of these was associated
with the Wheeler and Weickmann (2001) scheme described in Section 12.2. This
scheme has been operational for about 3 years and provides forecasts out to
about 2-3 weeks lead time for not only the MJO but other coherent modes of
tropical variability (e.g., Kelvin waves and mixed Rossby-gravity waves). A
second, somewhat related effort, that has been developed more recently builds on
the study by Lo and Hendon (2000) and utilizes what is referred to as an all-season
Real-time Multivariate MJO (RMM) index (Wheeler and Hendon, 2003). The index
results from projecting daily data onto the first two modes of a combined EOF of
tropical (15°N-15°S) OLR, and zonal winds at 850 and 200 hPa. This projection
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Figure 12.13. (left) Fifteen-member ensemble forecast of a boreal summer ISO event, in a
given phase of the event (out of four defined phases), using the ECHAMS5 AGCM. Data
are taken from 90°E~120°E and 10°N-20°N and are 30-90-day filtered precipitation (upper)
and 200-hPa velocity potential (lower) anomalies. (right) The signal-to-noise ratios (using the
methods in Waliser et al., 2003, see discussion in Section 12.4) for precipitation (upper) and
200-hPa velocity potential (lower) anomalies when combining 15-member ensembles from 3

different model ISO events and including all 4 phases of each event (i.e., N = 168).
From Liess et al. (2004).

onto the EOF pair, along with the prior removal of an estimate of the data’s very
low-frequency components (e.g., ENSO) via their relationship to interannual SST
variability, remove the need to perform time filtering to identify the MJO. The values
of the index (actually two indices, one amplitude time series for mode 1 (RMM1) and
one for mode 2 (RMM?2)) at any given time can be used for monitoring. In addition,
seasonally and time-lag dependent regression can be used to forecast the evolution of
these indices or any associated field, using as predictors RMM1 and RMM?2 at the
initial day. Skill scores in terms of spatial correlation are about 0.6 for a 12-day
forecast and 0.5 for a 15-day forecast. The advantages of the method are that it has a
seasonal dependence built in and it can be easily adapted for forecasting nearly any
field related to the MJO (see Chapter 5 for more details).
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Charles Jones and his colleagues have produced real-time predictions of the
MJO for about two years. The scheme utilized has evolved over this time period
and the most recent version is described in Jones ez al. (2003b). The model is based
on band-passed (20-90 days) OLR, and zonal winds at 850 and 200 hPa. Upon
filtering, a combined EOF of the three fields is computed and then the PCs are
separated into summer and winter. A seasonally dependent regression model is
then formed at every given lead between 1 and 10 pentads. The model utilizes the
first five PCs from the EOF analysis and the five most recent values of the PCs. The
model is found to exhibit winter and summer skills comparable to the other
empirical models described in Section 12.2.

In quite a different approach, stemming from a somewhat different and/or more
comprehensive objective, Matt Newman and his colleagues have developed and
implemented a real-time forecasting scheme that has applicability to the MJO
based on what is often referred to as the Linear Inverse Model (LIM; Winkler
et al., 2001; Newman et al., 2003). The LIM is based on NCEP-NCAR Reanalysis
data (Kalnay er al., 1996) that has had the annual cycle removed, been smoothed
with a 7-day running mean filter, gridded to T21 spatial resolution, and been reduced
by EOF decomposition. The specific fields used include global 250 and 750-hPa
streamfunction and tropical column-integrated diabatic heating. For the northern
hemisphere winter (summer) model, the first 30 (30) streamfunction and 7 (20)
diabatic heating EOFs are used. In this model, historical data are used to define
the relationship between a given state (i.e., a weekly average) and conditions one
week later, with the process being iterated to produce multi-week forecasts. The
advantage of the model is that it includes both tropical (in terms of diabatic
heating — hence a prediction of the MJO) and extra-tropical (in terms of streamfunc-
tion) forecasts. In this way, the interaction between can be more readily examined
and diagnosed. For tropical forecasts of diabatic heating, the LIM slightly outper-
forms a research version of the NCEP MRF model at lead times of 2 weeks for both
northern hemisphere summer and winter, particularly in regions where the MJO is
most strongly affecting the diabatic heating field (Figure 12.14).

Van den Dool and Qin (1996) developed a generalized wave propagating fore-
casting technique that they refer to as “empirical wave propagation” (EWP). EWP is
a “‘phase-shifting” technique that allows one, in the diagnostic step, to determine the
amplitude-weighted-average climatological phase speed of anomaly waves (e.g.,
equatorial MJO), where the waves are represented as either zonal or spherical
harmonics. The diagnostic step results in a table of phase speed (or one-day dis-
placement) for waves in the anomaly field as a function of zonal wave number,
calendar month, and Iatitude, based on a specified (model or observed) data set.
Its first application was to mid-latitude Rossby waves as diagnosed from 500-hPa
geopotential height fields (Qin and van den Dool, 1996). More recently, it has been
applied to the MJO (van den Dool and Saha, 2002) and implemented in real time.
Figure 12.15 shows the results from the diagnostic step based on analysis of five
years of 200-hPa velocity potential analysis data for all seasons. In this case, the
wave number 1 disturbance propagates at about 5ms~' and has an amplitude of
about 5 x 10°m?s~". In the forecast step, given an initial anomaly field, one projects
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Figure 12.14. Anomaly correlations between forecast and verifiation column-integrated
diabatic heating using the LIM forecast model (Winkler ez al., 2001; Newman et al., 2003)
and a research version of the NCEP MRF model (i.e., MRF98) for both the northern
hemisphere winter (top) and summer (bottom). Forecasts were made for June-August
periods for the years 1979-2000. Solid (dashed) contours indicate positive (negative) values.

the initial condition onto sines and cosines or spherical harmonics, then propagates
each wave over the longitude displacement provided by the table, and transforms the
field back to physical space. This technique is particularly well suited for empirically
forecasting the large-scale upper-level anomalies associated with the MJO.

It is almost a certainty that the MJO’s greatest impact based on sheer numbers
of people and the severity of losses in agriculture and economics is associated with
the Asian summer monsoon. Motivated by this, Webster and Hoyos (2003) have
developed an empirical model for predicting Indian district rainfall and the Brah-
maputra and Ganges River discharge into Bangladesh on 20-25-day timescales. The
empirical model is physically based with predictors drawn from the composite
structure of the monsoon ISV (e.g., Indian Ocean SST, precipitation over India,
upper level easterly jet, surface winds over the Arabian Sea). In essence, the model
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Based on van den Dool and Qin (1996) and van den Dool (2002).

is Bayesian and uses a wavelet technique to separate significant spectral bands. The
model has been used successfully to predict rainfall in hindcast mode. For example,
Figure 12.16 shows observed and 20-day forecasts of 5-day average rainfall amounts
over the Ganges Valley for the summers of 1999-2002. From these hindcasts, it
appears the model is well adept at capturing the seasonal, interannual, and sub-
seasonal rainfall variability. The model was also used for the first time during the
summer of 2003 in a real-time operational mode in the Climate Forecast Application
in Bangladesh project as part of a 3-tier forecasting system wherein seasonal
outlooks are given every month for the ensuing 6 months, a 20-25-day forecast is
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Figure 12.16. Gray lines indicate the forecasts at 20-day (4 pentads) lead time based on the
empirical model of Webster and Hoyas (2003) of precipitation averaged over the Ganges
Valley for the summers of 1999-2002. Black lines indicate observations. Gray and white
background denotes months.

prepared every 5 days, and a 1-5-day forecast is prepared daily. At the time of
writing, these forecasts of precipitation and river discharge have been integrated
into the Bangladesh forecasting system on an experimental basis.

Based on the sorts of activities and preliminary successes described above, along
with the needs to take a more systematic approach to diagnosing problems in
dynamical forecasts of the MJO, an experimental MJO prediction program has
recently been formulated and is in the process of being implemented. The formal
components of this program arose from two parallel streams of activity. The first
was the occurrence of the sub-seasonal workshop mentioned in the introduction of
this chapter (Schubert e al., 2002) and the recognition of the importance of the MJO
in regards to the potential skill to be had from sub-seasonal predictions. The second
stream of activity ensued from the priorities and recommendations of the US
CLIVAR Asian—Australian Monsoon Working Group (AAMWG). In their 2001
research prospectus (AAMWG et al., 2001) as well as in subsequent deliberations
with the US CLIVAR Scientific Steering Committee, recommendations were made
to develop an experimental prediction program due to the significant influence that
the MJO has on the character and evolution of Asian—Australian monsoons. These
streams of activity led to an informal (E-mail) discussion among a number of MJO
forecast enthusiasts during the summer and fall of 2002 that helped to formulate the
framework for such a program and to the identification of a sponsor that could
provide scientific and technical support as well as serve as the data host/server (i.e.,
NOAA'’s Climate Diagnostics Center). Invitations to participate in the program were
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subsequently sent out to a number of empirical modelers and international forecast-
ing agencies, and an implementation meeting was held in June 2003 (Waliser et al.,
2003a).

The motivation for the above experimental program involves not only the
obvious objective of forecasting MJO variability but also to serve as a basis for
model intercomparison studies. The latter includes using the forecasts and biases
in model error growth as a means to learn more about, and possibly rectify, model
shortcomings, and also includes using the empirical models to provide some measure
of the expectations that should be attributed to the dynamical models in terms of
MJO predictive skill. In addition, it is hoped that this program and its forecasts will
provide a modeling resource to those trying to diagnose interactions between the
MJO and other aspects of weather and sub-seasonal variability (e.g., Pacific-North
American (PNA), Arctic Oscillation (AO)). While the immediate goal of the
program is to assemble and provide what is readily available from the community
in terms of 2—4-week forecasts of the MJO, there are a number of challenges faced by
such an effort that are worth highlighting. The most notable involve 1) how to deal
with forecast models that have yet or routinely do not have a lead-dependent
forecast climatology which is necessary to remove a model’s systematic biases, 2)
the degree that coupled models and ensembles need to be or can be incorporated into
the project, 3) the manner the MJO signal(s) are to be extracted from the hetero-
geneous set of models (e.g., empirical and numerical), and 4) the general logistical
problems of dealing with assembling a very non-uniform set of forecast products
from different agencies and researchers in near real time and streamlining them for
the purpose of this project.

12.6 DISCUSSION

The review of the studies examined in this chapter was meant to summarize the
historical developments associated with MJO forecasting and provide a brief descrip-
tion of the current state of affairs in regards to MJO prediction capability and what
is known of its inherent limits of predictability. Overall, there is enough evidence to
suggest that MJO prediction can be approached with considerable optimism due to
the facts that our capabilities as yet seem far from saturating their potential, and
once exploited in an operational sense, will provide a unique and important link
between our more mature areas of forecasting, namely weather and ENSO. At
present, one of our greatest challenges is still to develop robust and realistic repre-
sentations of the MJO in our weather and climate forecast models (Chapter 11).
Once we have such a capability, we not only have a means to improve predictions of
low-frequency weather variations in the tropics that are directly impacted by the
MJO, including the onsets and breaks of the Asian and Australian summer
monsoons (e.g., Yasunari, 1980; Lau and Chan, 1986; Hendon and Liebmann,
1990a, b; see also Chapters 2, 3, and 5), but we will also likely improve forecasts
associated with a number of processes remote to the MJO (see Chapter 4). These
include wintertime mid-latitude circulation anomalies (e.g., Weickmann, 1983;
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Liebmann and Hartmann, 1984; Weickmann et al., 1985; Lau and Phillips, 1986;
Ferranti et al., 1990; Higgins and Schubert, 1996; Higgins and Mo, 1997; Jones et al.,
2003a), summertime precipitation variability over Mexico and South America as well
as to austral wintertime circulation anomalies over the Pacific-South American
sector (e.g., Nogues-Paegle and Mo, 1997, Mo and Higgins, 1998b; Jones and
Schemm, 2000; Mo, 2000b; Paegle et al., 2000), extreme events in rainfall variability
along the western U.S.A. (e.g., Mo and Higgins, 1998a, c; Higgins et al., 2000; Jones,
2000; Whitaker and Weickmann, 2001), and the development of tropical storms/
hurricanes in both the Atlantic and Pacific sectors (Maloney and Hartmann,
2000a, b; Mo, 2000a; Higgins and Shi, 2001).

From the discussion in this chapter, as well as those in Chapters 7, 10, and 11, a
number of areas of research and development present themselves. These include a
more complete understanding of the role that coupling to the ocean plays in main-
taining, and in particular forecasting, the MJO (e.g., Flatau et al., 1997, Wang and
Xie, 1998; Waliser et al., 1999a; Kemball-Cook et al., 2002; Fu et al., 2003). For
example, a number of recent studies have indicated an error in the phase relation
between the convection and SSTAs associated with the MJO in GCM simulations
using specified SSTs, whereas coupled simulations tend to reproduce the observed
phase relationship (Wu et al., 2002; Fu and Wang, 2003; Zheng et al., 2003). These
sorts of studies not only imply the importance of incorporating MJO-related SSTAs
but also necessitate they be coupled (i.e., forecast) as well. In addition, there has been
virtually no research (albeit the somewhat related work by Krishnamurti et al.
discussed in Section 12.3) done on model initialization/data assimilation issues in
terms of what are the critical criteria to meet in order to adequately initialize the state
of the MJO. Related to this are issues regarding the importance of the basic state of
the forecast model and how an incorrect basic state might negatively impact the
maintenance and propagation of the MJO (Inness et al., 2003; Liess and Bengtsson,
2003; Liess et al., 2003; Sperber et al., 2003). Additional avenues of research include
exploring the methods proposed by Krishnamurti et al. (1990) with other present-
day forecast systems and on more MJO cases as well as exploring the possibility of
assimilating empirically-derived forecasts of the MJO into extended-range weather
forecasts in order to improve their forecasts of the MJO as well as the remote
processes and secondary circulations they interact with. In addition to the above,
there is clearly a need for additional dynamical predictability studies of the MJO
using other GCMs as well as sensitivity studies to test the effects of SST coupling and
ENSO state, the impacts from/on mid-latitude variability, and the influence of the
size and type of initial condition perturbations and definition of predictability.

12.7 APPENDIX

Excerpt from John von Neumann (1955):

It seems quite plausible from general experience that in any mathematical problem it
is easiest to determine the solution for shorter periods, over which the extrapolation
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parameter is small. The next most difficult problem to solve is that of determining the
asymptotic conditions — that is, the conditions that exist over periods for which the
extrapolation parameter is very large, say near infinity. Finally, the most difficult is the
intermediate range problem, for which the extrapolation parameter is neither very small
nor very large. In this case the neglect of either extreme is forbidden. On the basis of these
considerations, it follows that there is a perfectly logical approach to any computational
treatment of the problem of weather prediction. The approach is to try first short-range
forecasts, then long-range forecasts of those properties of the circulation that can perpe-
tuate themselves over arbitrarily long periods of time (other things being equal), and only
finally to attempt forecast for medium-long time periods which are too long to treat by
simple hydrodynamic theory and too short to treat by the general principles of equilib-
rium theory.
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